Silibinin attenuates radiation-induced intestinal fibrosis and reverses epithelial-to-mesenchymal transition

نویسندگان

  • Joong Sun Kim
  • Na-Kyung Han
  • Sung-Ho Kim
  • Hae-June Lee
چکیده

Radiotherapy is a common treatment for cancer patients, but its use is often restricted by the tolerance of normal tissue. As cancer patients live longer, delayed radiation effects on normal tissue have become a concern. Radiation-induced enteropathy, including inflammatory bowel disease and fibrosis, are major issues for long-term cancer survivors. To investigate whether silibinin attenuates delayed radiation-induced intestinal injury in mice, we focused on intestinal fibrotic changes. Silibinin improved delayed radiation injuries in mice in association with decreased collagen deposition within the intestines and deceased transforming growth factor (TGF)-β1 levels in the intestine and plasma. Treating mice bearing CT26 mouse colon cancer tumors with both silibinin and radiation stimulated tumor regression more than radiation alone. We also investigated the effect of silibinin on the radiation-induced epithelial-to-mesenchymal transition (EMT), the primary mechanism of fibrosis. We assessed changes in E-cadherin, N-cadherin, and α-smooth muscle actin expression, and demonstrated that silibinin attenuates radiation-induced EMT. Irradiating intestinal epithelial cells increased TGF-β1 levels, but silibinin suppressed TGF-β1 expression by inhibiting Smad2/3 phosphorylation. These results suggest silibinin has the potential to serve as a useful therapeutic agent in patients with radiation-induced intestinal fibrosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curcumin Suppresses Intestinal Fibrosis by Inhibition of PPARγ-Mediated Epithelial-Mesenchymal Transition

Intestinal fibrotic stricture is a major complication of Crohn's disease (CD) and epithelial-to-mesenchymal transition (EMT) is considered as an important contributor to the formation of intestinal fibrosis by increasing extracellular matrix (ECM) proteins. Curcumin, a compound derived from rhizomes of Curcuma, has been demonstrated with a potent antifibrotic effect. However, its effect on inte...

متن کامل

miR-34c attenuates epithelial-mesenchymal transition and kidney fibrosis with ureteral obstruction

micro RNAs (miRNAs) are small non-coding RNAs that act as posttranscriptional repressors by binding to the 3'-UTR of target mRNAs. On the other hand, mesenchymal-epithelial transition (EMT) and kidney fibrosis is a pathological process of chronic kidney disease (CKD), and its relationship to miRNAs is becoming recognized as a potential target for CKD therapies. To find new miRNAs involved in EM...

متن کامل

Polydatin alleviated radiation‐induced lung injury through activation of Sirt3 and inhibition of epithelial–mesenchymal transition

Radiation-induced lung injury (RILI) is one of the most common and fatal complications of thoracic radiotherapy. It is characterized with two main features including early radiation pneumonitis and fibrosis in later phase. This study was to investigate the potential radioprotective effects of polydatin (PD), which was shown to exert anti-inflammation and anti-oxidative capacities in other disea...

متن کامل

Foxm1 transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition.

Alveolar epithelial cells (AECs) participate in the pathogenesis of pulmonary fibrosis, producing pro-inflammatory mediators and undergoing epithelial-to-mesenchymal transition (EMT). Herein, we demonstrated the critical role of Forkhead Box M1 (Foxm1) transcription factor in radiation-induced pulmonary fibrosis. Foxm1 was induced in AECs following lung irradiation. Transgenic expression of an ...

متن کامل

Silibinin suppresses EMT-driven erlotinib resistance by reversing the high miR-21/low miR-200c signature in vivo

The flavolignan silibinin was studied for its ability to restore drug sensitivity to EGFR-mutant NSCLC xenografts with epithelial-to-mesenchymal transition (EMT)-driven resistance to erlotinib. As a single agent, silibinin significantly decreased the tumor volumes of erlotinib-refractory NSCLC xenografts by approximately 50%. Furthermore, the complete abrogation of tumor growth was observed wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017